Numerical Simulations of the Jet in the Crab Nebula

A. Mignone¹, A. Ferrari¹, E. Striani², M. Tavani²

¹Dipartimento di Fisica, Università di Torino ²Iasf/iaps università di tor vergata (roma)

Outline

- **1**. Observational Evidence
- 2. Numerical Models of Relativistic MHD jets
- **3**. Results
- 4. Summary

Observational Evidence

- X-ray observation (Chandra) show the emergence of a bipolar jets and extending to the SE and NEW of the pulsar;
- A region of diffuse emission (Anvil) may be associated with shocks and marks the base of the X-ray and optical jet;

- Knots of emission are seen along the jets;
- In the SE jet material flows with v/c~0.4 slowing down to ~0.02 into the nebula;

Jet Wiggling

SE jet morphology is "S" shaped and show remarkable time variability:

 \rightarrow evidence for some kind of flow instability (Current Driven ?)

On the Origin of the Jet

- Jet forms downstream of the wind termination shock;
- Magnetic fields confine matter towards polar axis;
 - → "<u>tooth-paste</u>" effect: hoop stress of the azimuthal magnetic field carried by the wind (Lyubarsky 2002).

Models confirmed by 2D axisymmetric numerical simulations (Komissarov & Lyubarski 2003,2004, Del Zanna et al. 2004, Bogovalov et al. 2005)

Jet Origin: previous results

For moderate/large $\sigma = B^2/(8\pi\rho c^2\gamma^2)$ magnetic hoop stress suppresses high velocity outflows in the equatorial plane and divert them towards the polar axis partially driving the super-fast jet¹

¹Del Zanna et al, A&A (2004) 421,1063

3D Jet models

- Initial conditions from Del Zanna et al. (2004).
- Inside 0.2 < r < 1 (ly): freely expanding supernova ejecta (3 M_{sun}, E = 10⁵¹ erg)
- Jet enters at the lower z boundary;
- Pulsar wind structure not considered: jet already formed as the result of the collimation process;
- Jet radius R_i = 3 · 10¹⁶ cm
- Computational domain:
 x,y∈[-25,25] R_j/c, z∈[0, 80] R_j/c;
 (≈ 1.6 × 2.5 ly).

3D Jet models

Jet flow modeled by 5 parameters:

- 1. Sonic flow Mach number: $M_s = v_i / c_s$
- 2. Bulk Lorentz factor: $\gamma_j = (1-v_j^2)^{-1/2}$
- 3. Jet/ambient dens. contrast: $\eta = \rho_i / \rho_e$
- 4. Magnetization: $\sigma = B^2/(8\pi\rho\gamma^2);$
- 5. Pitch angle: $P = RB_z/B_{\phi}$

Parameter Constraints

Parameters are constrained by 2D axisymmetric results

- $1.3 \leq Ms \leq 2 \rightarrow hot jet$
- $2 \lesssim \gamma \lesssim 4$
- σ=?
- Density contrast $\eta \lesssim 10^{\text{-6}}$
- Azimuthal field implies Pitch $\rightarrow 0$ (Bz = 0)

- > This leaves γ and σ as free parameters.
- > We consider hollow (η =10⁻⁶), hot (M_s = 1.7) jets initially carrying purely axial current (B_{ϕ} ≠ 0, B_z = B_R = 0).
- \succ p(R) and B_{ϕ}(R) set by radial momentum balance across the jet

Equations

We solve the equations for a relativistic perfectly conducting fluid describing energy/momentum and particle conservation (relativistic MHD equations)

$$\frac{\partial}{\partial t}(\rho\gamma) + \nabla \cdot (\rho\gamma\mathbf{v}) = 0$$

$$\frac{\partial\mathbf{m}}{\partial t} + \nabla \cdot \left[w\gamma^{2}\mathbf{v}\mathbf{v} - \mathbf{B}\mathbf{B} - \mathbf{E}\mathbf{E}\right] + \nabla p_{t} = 0$$

$$\frac{\partial\mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0$$

$$\frac{\partial\mathcal{E}}{\partial t} + \nabla \cdot (\mathbf{m} - \rho\gamma\mathbf{v}) = 0$$

$$\mathcal{E} = w\gamma^{2} - p + \frac{\mathbf{B}^{2} + \mathbf{E}^{2}}{2} - \rho\gamma$$

- We use the PLUTO^{1,2} code for astrophysical fluid dynamics (freely distributed <u>http://plutocode.ph.unito.it</u>)
- > Numerical resolution 320 x 320 x 768 zones (\approx 20 point on the jet)

Simulation Cases

> We explore different values of Lorentz factor γ (= 2, 4) and magnetization σ (= 0.1, 1, 10) for a total of 6 different cases:

Case	γ	σ	Plasma β
A1	2	0.1	4.5
A2	2	1	0.6
A3	2	10	0.2
B1	4	0.1	11.4
B2	4	1	1.2
B3	4	10	0.15

Results: Case A2

www.videomach.com

Case	γ	σ
A1	2	0.1
A2	2	1
A3	2	10
B1	4	0.1
B2	4	1
B3	4	10

Sigma distribution

Results: Case A2

Case	γ	σ
A1	2	0.1
A2	2	1
A3	2	10
B1	4	0.1
B2	4	1
B3	4	10

Pressure distribution

Results: Case B2

www.videomach.com

Case	γ	σ
A1	2	0.1
A2	2	1
A3	2	10
B1	4	0.1
B2	4	1
B3	4	10

Sigma distribution

Results: Case B1

Case	γ	σ
A1	2	0.1
A2	2	1
A3	2	10
B1	4	0.1
B2	4	1
B3	4	10

Sigma distribution

General Features

- Large over-pressurized turbulent cocoons;
- Collimated central spines moving at mildly relativistic speeds;
- Cocoon less magnetized than central spine;
- Large-scale deflections may be present.

www.videomach.com

General Features

- 3D models very different from
 2D counterparts¹:
- Strong toroidal configurations expected to become unstable to current driven modes. Most unstable mode m=1 (kink);
- Jet develops non-axisymmetric structures with large time-dependent deflections off the longitudinal axis;
- Deflection time-scale of the order of a few years;

General Features

Wiggling and deflection more pronounced at the terminal bow shock where magnetic field is amplified:

Jet Position

Jets are slow because of large density contrast (ρ_j /ρ_e < 10⁻⁶);
 Faster jets reach the outer edge of the expanding nebula.

Jet Deflections

> Deflection is quantified using the baricenter:

Jet Deflections

- Case A2 and A3 (low-speed, moderately/highly magnetized) jets show the largest bending (> 20 jet radii);
- Larger Lorentz factors (B2, B3) have a stabilizing effect;
- Weakly magnetized jets (A1, B1) are less affected by the growth of instability;

Flow Direction

 $ar{ heta}_{\pm}(z)$

Flow direction is measured by computing the average angle of the mass flux vector with vertical direction:

$$= \cos^{-1}\left(\frac{\int (v \cdot \hat{z}/|v|)\chi_{\pm} \, dx \, dy}{\int \chi_{\pm} \, dx \, dy}\right)$$

Flow Direction

- Low-speed jets assume a large-scale curved structure;
- High-speed jets more parallel and build kicks in proximity of the jet head;

Magnetic Field

- Magnetic field topology remains mainly toroidal or helical during the propagation;
- Azimuthal field has the effect of "shielding" the core preventing interaction with the surrounding.
- Magnetic field dissipates and becomes turbulent in the cocoon
 (-> randomization)

Summary

- 3D models of azimuthally confined relativistic jets are very different from 2D axisymmetric models:
 - Kink-unstable non-axisymmetric structures with large time-variability;
 - Large σ (\gtrsim 1) leads to considerable jet deflections;
 - Pronounced asymmetric backflows;
 - Jet wiggling progressively more pronounced towards the jet head
 - Multiple strong shocks are formed by change of direction;
- Low-speed (γ ≤ 2), moderately/highly magnetized jets (σ ≃ 1-10) are promising candidates for explaining the morphology of the Crab jet.
- Future models will consider the jet-torus connection in 3D

Thank you